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Four roller prq[Hes used in cylindrical roller beatqng design and mam_/'acture were analyzed using both a closed.form

sohttion and finite element analysis (FEA] for stress and li['e. The roller pt_)files analyzed were fiat, tapered end.

aerospace, andJhlly ccw,'ned loaded against a fiat raceway. Four rolling-element bearing life models were chosen.lot" this

analysis and compared. These were those of Weibull, Lundberg and Palmgren, loannides and Harris, and Zarets_'. The

.fiat roller prqfile without edge loading has the longest predicted l!fe. However, edge loading can reduce life by as much as

98 percent. The end tapered profile produced the highest lives but not significant O, di]ferent than the aerospace prq/He.

The Jidly ctwvned profile produces the lowest lives. The resultant predicted l!fe at each stress condition not only depends

on the l!/e equation used but also on the Weibull slope assumed. For Weibull slopes q[" 1.5 and 2, both Lundberg-Palmgren

and laonnides-Harris equations predict lower lives than the ANS1/ABMA/ISO standards. Based upon the Hertz stresses

for line contact, the accepted load-l(fe exponent q/ 10/3 results in a maximum Hertz stress-li/'e exponent

equal to 6. 6. This value is" inconsistent with that experienced in the [ield.

SYMBOLS

A

C

e

d

e

F

Ax)

h

L

La

Lm

Llo

L_

It.

material-life factor

dynamic load capacity, N (lbD

critical shear stress-life exponent

roller diameter, m (in.)

Weibull slope

probability of failure, fraction or percent

probability of survival function

exponent

life, number of stress cycles or hr

adjusted life, number of stresses cycles or hr

adjusted life based on fatigue limit, number of stress cycles or hr

10-percent life or life at which 90 percent of a population survives, number of stress cycles or hr

characteristic life or life at which 63.2 percent of a population fails, number of stress cycles

roller flat length, m (in.)

total length of raceway, m (in.)
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[r

I,

N

I1

P

P

1",

S

V

X

X

Z

or,,

r

r,,

effective roller length, m (in.)

total roller length, m (in.)

life, number of stress cycles

maximum Hertz stress-life exponent or number of components, elemental volumes

normal or equivalent radial load, N. (lbf)

load-life exponent

comer radius, m (in.)

crown radius, m (in.)

probability of survival, fraction or percent

maximum Hertz stress. GPa (ksi)

residual stress, GPa (ksi)

stressed volume, m _ (in. _)

exponent

load, time, or stress

depth to maximum critical shear stress, m (in.)

stress or strength, GPa (ksi)

location parameter, GPa (ksi)

vonMises stress, GPa (ksi)

critical shear stress. GPa (ksi)

maximum shear stress, GPa (ksi)

orthogonal shear stress. GPa (ksi)

fatigue limit, GPa (ksi)

Subscripts

i

tl

ref

sys

V

i'h component or stressed volume

number of components or elemental volumes

reference point, stress, volume, or life

system or component probability of survival or life

related to stressed volume

designates characteristic life or stress
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INTRODUCTION

ThisbasisfortheANSI/AFBMAandISOlife predictions(1-3)forcylindricalrollerbearingsis thetheoryof G.
LundbergandA.Palmgren(4,5).Theirlifetheoryisbasedupontheworkof Weibull(6-8).Subsequently,othershave
publishedmodificationsofLundbergandPalmgren(4,5).Amongthesearethetheoriesof IoannidesandHarris(9)and
Zaretsky(10-12).

Zaretsky,Poplawski,andPeters(13)comparingtheresultsofthedifferentlifetheoriesanddiscussingtheirimplication
in thedesignandanalysisofballbearingspresentedacriticalanalysis.Foraninverseninth-powerrelationbetweenlife
andmaximumHertzstressfor"pointcontact"(ballonraceway),theLundberg-Palmgrentheoryqualitativelypredictslife
best.However,tbraninverse12thpowerrelationbetweenlifeandmaximumHertzstress,theZaretsky modified theory is

best. Using a "fatigue-limiting stress" such as proposed by loannides and Harris (9) without modifying factors significantly

over predicts the life of ball bearings (Zaretsky, et al. (13)).

A. Palmgren (14,15) in 1924 suggested a probabilistic approach to predicting the lives of machine components and, more

specifically, rolling-elements bearings. On the basis of his test results, he suggested that" an acceptable life is defined as the

time at which 10 percent of a population of bearings will have failed or 90 percent will have survived. He also noted that

there was an apparent size effect on life. that is, larger bearings with the same equivalent load as smaller bearings had

shorter lives than the smaller bearings.

From Lundberg and Palmgren (4), the L,) life of a bearing can be determined from the equation:

LI 0 = [C/p] 1' (1)

where Lt0 is the bearing life in millions of race revolutions, C is the dynamic load capacity of the bearing or the theoretical

load that will produce a life of one-million race revolutions with a 90 percent probability of survival, P is the applied

equivalent radial load and p is the load-life exponent.

Predicting the lives of roller bearings is more complex than that of ball bearings. This is because the roller geometry is a

variable in the design of these bearings. Because of the deleterious effects on life due to edge loading, the rollers have a

full crown or a partial crown rather than a flat roller profile. As a result the Hertz contact in most roller bearings is a hybrid

between "line contact" (flat roller profile on a plain) and "point contact." Lundberg and Palmgren (5) state that with line

contact between both rings the exponent p = 4. They further state that with point contact between both rings the exponent

p equal 3. They observe that, as a rule, the contacts between the rollers and the raceways transform from a point to line

contact at some load. Accordingly, the load-life exponent p varies from 3 to 4 for different loading intervals within the

same roller bearing. In this regard, Lundberg and Palmgren suggest that a suitable value of load-life exponent p is 10/3.

They further suggest that it be applied to all cylindrical roller bearings for mixed point and line contact. This value ofp has

become the accepted value used in the ANSl/ABMA and ISO Standards (1-3).

The relationship between load and maximum Hertz stress is Sm,_ _ P' where Sma,, is the maximum Hertz stress and x is an

exponent. For line contact x = 2 and for point contact x = 3 (16). Hence, for line contact the theoretical resultant relation

between maximum Hertz stress and life is L - S'_ma_. Based upon a load-life exponent p of 10/3 and, depending on what

assumption is made, the resulting stress-life exponent n can either be 6 2/3 or 10 for line or point contact, respectively.

Tests and analysis by Rumbarger and Jones (17) for oscillatory straight needle roller bearings resulted in a load-life

exponent of 4, which for those bearings established a Hertz stress-life exponent of 8. However, there is no controlled data

that is published to establish with reasonable certainty the correct value of the Hertz stress-life exponent for cylindrical

roller bearings. From Parker and Zaretsky (18) for point contact, values of the Hertz stress-life exponent experimentally

range from 8.4 to 12.4.

Jones (19) recognized that defining the state of stress in a roller-race contact is difficult. As a result, in his computer

program he segmented the roller into thin slices. He calculated the Hertz stress in each segment by treating the segment as

a thin roller. However, Jones (19) does not relate the Hertz stresses in the contact to life but uses a 4th power load-life

exponent. Hence, the predictive life is not reflective of the actual stresses in the bearing.

As was discussed by Zaretsky et al. (13), varying the Hertz stress-life exponent n can significantly affect bearing life

predictions. For roller bearings, a 20-percent variation in Hertz stress can result in a nearly a two to one difference in life

prediction depending on whether an exponent of 6 2/3 or 10 was selected in the calculations. Conversely, if a load-life

relation is used independent of stress, a similar variation can occur between the actual life and the predicted value. For a

given load, different roller geometries result in significantly different Hertz stresses and thus life. Both Lundberg and

Palmgren (4,5) and Jones (19), which is based upon Lundberg and Palmgren under predict roller bearing life.
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Inviewoftheaforementioneddiscussion,theobjectivesof the work reported herein were the following:

(1) Determine the three dimensional volumetric stress field between a square roller with different crown profiles and a
flat raceway using finite element analysis.

(2) Evaluate and compare the various life theories lbr cylindrical roller bearings with different roller geometry.

(3) Determine what effect the presumption of a fatigue limit has on cylindrical roller bearing life prediction.

LIFE THEORIES

Weibull Equation

I')'acture Strength in 1939 W. Weibull (6,7) published two papers that describe a statistical approach to determine the

strength of solids. Weibull postulated that the dispersion in material strength for a homogeneous group of test specimens
could be expressed according to the following relation:

in in(l/S)=e ln[X / X,t3] (2)

where X = G and A'_ = o'# (see Appendix A).

Equation (2) relates specimen survival S to the fracture (or rupture) strength o. When In In(l/S) is used as the ordinate

and In o" as the abscissa and fracture (and fatigue) data are assumed to plot as a straight line. The slope (tangent) of this line

is referred to as the Weibull slope or Weibull modulus usually designated by the letter e or m. The plot itself is referred to

as a Weibull plot.

By using a Weibull plot, it becomes possible to estimate a cumulative distribution of an infinite population from an

extremely small sample size. The Weibull slope is indicative of the dispersion of the data and its density (statistical)

distribution. Weibull slopes of 1, 2, and 3.57 are indicative of exponential, Rayleigh, and normal (Gaussian) distributions,

respectively (8).

The scatter in the data is inversely proportional to the Weibull slope, that is, the lower the value of the Weibull slope, the

larger the scatter in the data and vice versa. The Weibull slope is also liable to statistical variation depending on the sample

size (database) making up the distribution (20). The smaller the sample size the greater the statistical variation in the slope.

Weibull (6,7) related the material strength to the volume of the material subjected to stress. [f we imagine the solid to be

divided in an arbitrary manner into n volume elements, the probability of survival for the entire solid can be obtained by

multiplying the individual survivabilities together as follows:

S = S1.$2.$3...S,_ (3)

where the probability of t'ailure F is

F = 1- S (4)

Weibull (6,7) further related the probability of survival S, the material strength _J, and the stressed volume V, according

to the following relation:

lnlS . f(X)dV (5)

where

f(X) = ge (6)

For a given probability of survival S,

(7)
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FromEq.(7)['orthesameprobabilityofsurvivalthecomponentswiththelargerstressedvolumewill havethelower
strength(orshorterlife).

Fatigue Li[e In conversations with E.V. Zaretsky on January 22, 1964, W. Weibull related how he had suggested to his

contemporaries A. Palmgren and G. Lundberg in Gothenburg, Sweden to use his equation to predicl bearing (fatigue) life
where

f(X) = rCN e (8)

and where r is the critical shear stress and N is the number of stress cycles to failure.

in the past we have credited this relation to WeibuIl. However, there is no documentation of the above nor any

publication to the authors' knowledge of the application of Eq. (8) by Weibull in the open literature. However, in

Ref (13) we did apply Eq. (8) to Eq. (5) where

(9)

The parameter c/e is the stress-life exponent. This implies that the inverse relation of life with stress is a function of the life

scatter or data dispersion.

From Hertz theory l' and r can be expressed as a function of S,1,_ (13) and substituting L for N

,
L = ALr j LVJ "

Sm_x

(10)

From (13), solving tbr the value of the exponent n for line contact (roller on raceway) from Eq. (10) gives

c+l
n - ( 11 a)

e

For point contact (ball on raceway)

c+2
n = -- (1 lb)

e

It should be noted that before the Lundberg-P_rlmgren life theory (4) was published, Palmgren (21 ) had already published

Eq. (1) relating bearing life to the inverse of load P to an exponent p. The values for the exponents c and e selected by

Lundberg and Palmgren were empirical and made to conform to the values ofp previously published by Palmgren. In

order to retain the value ofp used by Palmgren, the values for the Weibull slope e must be 1.11 and c/e must be 9.3. If

these values from Lundberg and Palmgren for c and e are retained, then from Eqs. (11 a) and (11 b), n equals 10.2 and 11.1

for line and point contact, respectively. (Experience has shown that the Weibull slope e for most bearing fatigue data varies

from 1 to 2.)

Using a finite-element analysis (FEA) first used for rolling-element bearings by Ioannides and Harris (9), the computed

life of individual stressed volumes can be integrated as follows:

1_ Nef
In 2 Jv rcdV (12)

Equation (12) can be rewritten to represent each individual stressed volume and associate stresses as follows:

E ] r "ac,,'e r nl/eLTJJ L-_, J
(13)
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wherefromEq.(10),themateriallhctor

r 1C/Cr I ll/C

a=L"eiir"eS] l%J (14)

From Lundberg and Pahngren (4) (see Appendix B) the lives of the individual stressed volumes at a given probability of
survival are summarized as follows:

(15)

By replacing X in Eq. (2) with L, the probability of survival S and the life L can be related to Sr_t-and Lr_t as tbllows:

S = SireL'_f''LI" (16)

Lundberg-Palmgren Equation

in 1947, G. Lundberg and A. Palmgren (4) applied Weibull analysis to the prediction of rolling-element bearing fatigue

life. The Lundbcrg-Palmgren theory expressed/(X) in Eq. (5) as

,lffCN -°

f(X)-- --7 117)

where r is the critical shear stress, N is the number of stress cycles to failure, and Z is the depth to the maximum critical

shear stress in a concentrated (Hertzian) contact. From Eqs. (5) and (12)

N_p1I"'F
LT_I L_J

(18)

From Hertz theory ( 16), I; r, and Z can be expressed as a function of S .... and substituting L for N

A¢' y"'¢1 1c: tTJ tfrj S_a..<
(19)

Substituting these values into Eq. (12) and solving lbr the exponent n for line contact gives

c+l-h
n - (20a)

and Ibr point contact

c+2-h
n - (20b)

From Lundberg and Pahngren (4), using the values of c and e previously discussed and h = 2.33, then from

Eqs. (2a) and (20b), n equals 8.1 and 9 for line and point contact, respectively.

For the Lundberg-Palmgren theory, using a finite-element analysis (FEA), the lives of the individual stressed volumes

can be computed as follows:
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C

In I _ (21)

As was done for Eq. (12). Eq. (21) was rewritten to rcpresent each individual stressed volume and associate stresses as

follows:

Li --[ Tref [ / _ef [ t zi [ (22)
L r,. j L I"i J LZref J

where from Eq. (19), the material factor

Lref[12reflc'e[ , 1l''e r 1h/eA j LI'refi = LZref i (23)

Using Eq. (15), the lives of the individual stressed volumes are summarized to obtain the component life L.

loannides-Harris Equation

loannides and Harris (9), using Weibull 46,7) and Lundberg and Palmgren (4,5} introduced a fatigue-limiting stress

where from Eq. (5)

f(X) = (r - r,,)CN e (24)
Z h

The equation is identical to that of Lundberg and Palmgren (Eq. (18)) except for the introduction of a fatigue-limiting
stress where

\C'f' l "e

N- V IZ] (25)

Equation (25) can be expressed a function of Sma_ where

A( 1 1 c/e 1 t'e t.'e (26)

S;;ax

ioannides and Harris (9) use the same values of Lundberg and Palmgren for e, c, and h. If r, equal 0, then the values of the

exponent n are identical to those of Lundberg and Palmgren (Eqs. (20a) and (20b)). However, for values of r,, > O, n is

also a function of (r - r,,).

loannides and Harris (9) using finite element analysis (FEA) integrated the computed life of elemental stress volumes to

predict bearing life. Their equation relates each elemental volume as follows:

lnl_ Nel, (r- r,,)CdV
• Zh (27)

Equation (27) can be rewritten to represent each individual stressed volume and associated stresses as follows:

r'-,l:r(+-,),o,+',,+t iv+_.,//+__,/
/Lref J L ;J kZref 3
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If welettrot=(r r,,)_fthenthevalueofA for Eq. (26) is the same as Eq. (23). The value of A from Eq. (23) is then

used to calculate the individual lives for each stressed volume. Using Eq. (15), the lives of the individual stressed volumes

are summarized to obtain the component life L.

Zaretsky Equation

Both the Weibull and Lundberg-Palmgren equations above relate the critical shear stress-life exponent c to the Weibull

slope e. The parameter cA" thus becomes, in essence, the effective critical shear stress-life exponent, implying that the

critical shear stress-life exponent depends on bearing life scatter or dispersion of the data. A search of the literature tbr a

wide variety of materials and tbr nonrolling-element fatigue reveals that most stress-life exponents vary from 6 to 12. The

exponent appears to be independent of scatter or dispersion in the data. Hence, Zaretsky (12) has rewritten the Weibull

equation to reflect that obse_'ation by making the exponent c independent of the Weibull slope e, where

f(X) = rCeN e (29)

From Eqs. (5) and (29)

(30)

Equation (30) differs from the Weibull Eq. (9) and the Lundberg-Pahngren Eq. (4) in the exponent of the critical stress r.

Zaretsky assumes based upon experience that the value of the stress-exponent c = 9. Lundberg and Palmgren (4) assumed

that once initiated, the time a crack takes to propagate to the surface and fonn a fatigue spall is a function of the depth to

the critical shear stress Z. Hence, by implication, bearing fatigue life is crack propagation time dependent. However,

rolling-element fatigue life can be categorized as _'high-cycle fatigue." Crack propagation is an extremely small time

fraction for the total life or running time ot" the bearing. The Lundberg-Palmgren relation implies that the opposite is true.

To decouple the dependence of bearing life and crack propagation rate, Zaretsky (13) dispensed with the Lundberg-

Palmgren relation ofL - Z _'' in Eq. (30). (It should be noted that at the time (1947) Lundberg and Palmgren published their

theoD', the concepts of"high cycle" and "lot, cycle" fatigue were only then beginning to be formulated.)

Equation (30) can be written as

(31)

From Ref. (13), solving for the value of the exponent n, for line contact from Eq. (31) gives

c+l
n - (32a)

e

and for point contact

c+2
n - (32b)

e

where c = 9 and e = 1.11, n = 9.9 for line contact and n = 10.8 lbr point contact.

Zaretsky (10) as well as ioannides and Harris (9) proposed a generalized Weibull-based methodology for structural life

prediction that uses a discrete-stressed-volume approach. August and Zaretsky (11) extended this methodology by

developing a technique tbr predicting component life and survivability that is based on finite element stress analysis.

Zaretsky, like loannides and Harris, integrates the complete life of elemental stressed volumes as follows:
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And.aswith loannides and Harris, an elemental reference volume and stress is required. Equation (33) is rewritten as

follows:

IL, (34)

where from Eq. (31). the material factor

A= Lref [_'ref ]c [I'ref ] lie (35)

The lives of the individual stressed elements are summarized in accordance with Eq. (15).

Although Zaretsky (12) does not propose a fatigue-limiting stress, he does not exclude that concept either. However, his

approach is entirely different from that of loannides and Harris (9). For critical stresses less than the fatigue-limiting stress, the

life for the elemental stressed volume is assumed to be infinite. Thus, the stressed volume of the component would be affected

where L = 1/V/''. As an example, a reduction in stressed volume of 50 percent results in an increase in life by a factor of 1.9.

ROLLER TYPEAND PROCEDURE

Roller Geometr3'

A schematic of a nonlocating cylindrical roller bearing is shown in Fig. 1. This bearing type allows axial movement of

the inner or outer ring to accommodate axial thermal expansion of the shaft and tolerance build up in an assembly. Because

roller bearings have greater rolling-element surface area in contact with the inner and outer races, they generally support

greater loads than comparably sized ball bearings. Cylindrical roller bearings are designed primarily to carry heavy radial

loads. If properly designed, they can be operated with nominal thrust loads of up to 5 percent of their radial load with no

apparent degradation of performance.

Although roller bearings support greater loads than ball bearings, roller bearings are more sensitive to misalignment

and/or edge loading. The effect of edge loading on "'straight" rollers on load or stress profile is shown in Fig. 2. The higher

stresses result in reduced bearing life due to rolling-element fatigue. Angular misalignment between the shaft and housing

also causes nonuniform stress distribution on the rollers. Poor alignment of the bearings on the shaft is another reason for

misaligned inner and outer rings. Moment loading on the shaft can also misalign the bearing. In order to minimize the

effect of misalignment and edge loading on bearing life, the rollers are profiled as shown in Fig. 3, usually with a full or

partial crown. The effect of a partial crown on load or stress profile is shown in Fig. 2.

The limiting speed of a cylindrical roller depends on roller length-to-diameter ratio, precision grade, roller guidance,

cage type and material, type of lubrication, shaft and housing accuracy, and heat dissipation of the overall mounting. For

general use, roller dimensions having an effective roller length/,.equal to roller diameter d, referred to as a _'square'" roller,

provides the best balance of load and speed capacities. The speed limitation of a roller bearing having "square" rollers is

considered equal to that of a comparable series ball bearing.

In Fig. 3, the roller effective length l,.is the length presumed to be in contact with the races under loading. Generally, the

roller effective length can be written as tbllows:

l,. = It - 217 (36)

where r, is the roller comer radius or the grinding undercut, whichever is larger.

To compare the effect of various roller profiles shown in Fig. 3 on cylindrical roller bearing life prediction, we selected a

simple roller-race geometry model for evaluation. The model assumes a plurality of normally loaded 12.7-mm (0.5-in.)
diameter rollers running in a linear, raceway having a length IL. A schematic of the roller-race model is shown in Fig. 4.

The effective roller length l,. is equal to the roller diameter, 12.7 mm (0.5 in.). Four roller profiles were studied. These were

(a) flat (straight) cylindrical roller with and without edge loading; (b) partially (end) tapered roller profile having a taper

NASA/TM--2000-210368 9



angleoi"0.20° withaflatlengthof 8mm(0.314in.);(c)aerospace(partiallycrowned)rollerwithaflatlengthot"8mm
(0.314in.)anda 965-mm(38-in.)radius;and(d)fullycrownedrollerhavinga965-mm(38-in.)crownradius.Three
maxmmmHertzstresseswerechosenforcomparisonswitheachrollergeometry.Thesewerenominally1.4,1.9,and
2.4GPa(200,275,and350ksi).Thenormalloadstoproducethesestressesweredifferentforeachrollerprofile.The
loads,stresses,anddimensionsusedforeachrollerprofileof Fig.3 intheroller-racemodelofFig.4 aresummarizedin
Table1.

Finite Element Stress Analysis and Life Prediction

A three-dimensional, finite-element analysis (FEA) for the geometry of the roller-race model used in the studies (Fig. 4)

is shown in Fig. 5. The model geometry takes advantage of the symmetric nature of the Hertzian contact for the case of no

significant surface shear stresses or misalignment.

The quarter section of the contact area face was divided into -162 elements. Element size ranged from 0.0991x0.0330 mm

(0.0039x0.0013 in.) to 0.1278x0.03175 turn (0.00503x0.00125 in.) depending on the Hertzian stress level. Element thickness

in the depth direction was 0.0254 mm (0.0010 in.) until a depth z/b of about 1.0. Beyond that depth the element thickness was

gradually increased. A typical model contained -3500 to 5900 solid isoparametric elements depending on the Hertz stress.

The model for 2.4-GPa (350-ksi) maximum Hertz stress had -5800 elements and 7000 nodes, giving about 18 000 degrees of

freedom after applying constraint boundary conditions. The analysis was performed on a 450-MHz personal computer with

the COSMOS/M commercially available FEA software.

We checked the FEA model results against calculated values by using classical Hertz contact stress theory (13). The

FEA-predicted principal nonhal stresses and the in-plane shear stress z'45 agreed within 3 percent of theory over the Hertz

stress range studied.

Three stress distributions that have been discussed over the years as being the "critical stress" in determining bearing

fatigue life. These three stresses were examined as the "stress of choice" within this paper. They were (a) the orthogonal

shear stress used by Lundberg and Palmgren: (b) in-plane shear stress l"45; and the Von Mises effective or equivalent stress

field. Figure 6(a) shows the three-dimensional orthogonal shear stress field for a aerospace roller with edge loading.

Figure 6(b) shows the corresponding Von Mises stress distribution. A maximum stress of about 0.84 GPa (122 ksi)

occurred 0.114 mm (0.005 in.) below the surface for a 1.4-GPa (200-ksi) maximum Hertz stress.

The results of the FEA runs at the three Hertz stresses at each roller profile were saved as databases to be used in

evaluating the life theories examined in this paper. For purposes of analysis, only the life of the race will be considered at

each load condition. The Li0 life at 2.4 GPa (350 ksi) for a flat roller geometry assuming no edge loading and using
ANSI/ABMA/ISO standards is normalized and assumed to be 1.

The component life and survivability for each of the life equations were predicted using results of the finite-element

analysis. By establishing a unit or gage volume Vrer, a depth to the gage volume Zrcrand a reference stress r_t. all related to

a reference life L_f, a material factor A for each of the life equations can be calculated for Weibull, Eq. (14); Lundberg-

Pahngren, Eq. (23): loannides-Harris, Eq. (23); and Zaretsky, Eq. (35).

By using the appropriate life equations and critical shear stress results and respective elemental volumes from the finite-

element analysis, L and S values tbr each element are computed. Hence, the probability of survival lbr the entire analysis

model can be obtained by using Eq. (3) to multiply the individual survivabilities. By using Eq. (15), the Lic_ life of the

component can be detennined.

These equations provide relative or normalized values for L and S in relation to reference values chosen from the

selected reference element. Generally, reference values of 1.0 and 0.9 are assigned to the Lre_ and S_f variables,

respectively, in the equations. These values imply a relative or normalized life of unity and a probability of survival of 90

percent for the reference element or volume l_cr. A reference element or volume can be chosen at random. However, we

have primarily used the element with the highest resultant stress at a reference depth below the surface, Zrer. The value of

l'_r selected by us was 5.32x10 14 m3 (3.244x10 9 in.3). The corresponding value of Z_r is 210x10 6 m (8.25x10 3 in.). The

exponent c and the Weibull slope e are parameters specific to the material. For the Weibull, Lundberg-Pahngren, and

Ioannides-Harris equations, c = 10.3. For the Zaretsky equation, c = 9. The Weibull slope e is assumed to be 1.11 The

exponent h is assumed to be 2.33. Three reference critical stresses r_¢r corresponding to V_. were used in the analysis and

evaluated. These were the maximum shear stress, r45; the orthogonal shear stress; and Von Mises stress whose respective

values were 0.82 GPa (119 ksi); 0.64 GPa (93.3 ksi); and 1.57 GPa (228.1 ksi). (A primer detailing this methodology is

presented in Ref (22).)
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RESULTS AND DISCUSSION

Life Theory Comparison

Using a closed tbrm Hertzian solution (16) and assuming no edge stresses, normal loads were calculated for the flat

roller geometry thai would produce maxinaum Hertz stresses of nominally 1.4, 1.9, and 2.4 GPa (200, 275, and 350 ksi).

These loads and stresses are summarized in Table 1, Based on these normal loads and the lamina method of Jones (19), the

maximum Hertz stresses lbr the end tapered, aerospace, and crowned roller geometries were determined. For these

calculations, the roller diameter and length were both 12.7 mm (0.5 in.). It was assumed that the rollers had no corner

radius, that is, the corner radius r, was zero. The contact width for all the roller profiles was equal to the roller length

except for the crowned roller profile at the 4239 N (953 lb) normal load that produced a contact length of 90 percent the
roller width.

Weibull Slope (Table 2).--For line and point contact, the maximum Hertz stress-life relationship was determined for the

Weibull, Lundberg-Palmgren, Ioannides-Harris, and Zaretsky equations as a function of the Weibull slope or Weibull

modulus. These results are summarized in Table 2. The ANSI/ABMA/ISO standards use a load-life exponent p of 10/3

(3.33) tbr line contact and 3 for point contact. From Lundberg and Palmgren (4) the load-life exponent p for line contact

should be 4 that results in a maximum Hertz stress-life exponent n of 8.1 for line contact (see Eq. (20a)). This value of n

while low is consistent with available but limited data (13, 18). Based upon the Hertz stresses for line contact and the load-

life exponent p of 3.33, results in a value of n equal to 6.6. This is inconsistent with the available database and can account

in part for the lower life predictions than that experienced in the field.

Lundberg and Palmgren's justification for a p of 10/3 was that a roller bearing can experience "mixed contact," that is,

one raceway can experience "line contact" and the other raceway "point contact" (5). This may be true in limited roller

bearing designs but it is certainly not consistent with the vast majority of cylindrical roller and tapered roller bearings

designed and used today.

Referring back to the 1945 edition ofA. Palmgren's book (2l), he uses a value ofp : 3 for both point and line contact.

The value of p = 3.33 appears to come initially from an unreported database discussed in Palmgren's 1924 paper (14,15).

For mixed contact for a given normal load, the race having point contact will have the lowest life, which will dominate the

resultant life of the bearing. The resultant bearing life will be less than the life of the raceway having the point contact.

Accordingly, we have calculated that the load-life exponent p in that case will have a value of -3.3 where the Weibull

slope is 1.11. This verifies the recommendation of Lundberg and Palmgren for mixed contacts. However, it is our opinion

that the value ofp should be not less than 4 for cylindrical roller bearings where line contact occurs on both raceways.

As currently practiced and as discussed above, both the load-life and stress-life relations are based upon the value of the

Weibull slope which for rolling-element bearings is assumed to be 1.11. For Lundberg and Palmgren this assumption

resulted in their analysis matching preexisting life equations (21 ) and their nonpublished bearing life database. However, as

shown in Table 2, both the load-life and stress-life relations of Weibull, Lundberg and Palmgren, and loannides and Harris

reflect a strong dependence on the Weibull slope. The existing rolling-element fatigue data reported by Parker and

Zaretsky (18) reflect slopes in the range of 1 to 2 and some cases higher or lower. If the slope were factored into the

equations then, as shown in Table 2, the stress-life (load-life) exponent significantly decreases with increases in Weibull

slope whereby the relation no longer matches reality. Accordingly, the Zaretsky equation that decouples the dependence of

the critical shear stress-life relation and the Weibull slope shows only a slight variation of the maximum Hertz stress-life

exponent n and Weibull slope. The value of n varies between 9.5 and 9.9 tbr line contact and 10 and 10.8 for point contact

for Weibull slopes between 2 and 1.11.

Li['e Prediction (Table 3).--It was calculated by us for cylindrical roller bearings comprising rollers having a diameter of

12.7 mm (0.5 in.) and a length of 12.7 mm (0.5 in.) that the dynamic load capacity of these bearings produced maximum

Hertz stresses of approximately 3.96 to 4.31 GPa (575 to 625 ksi). Accordingly, a maximum Hertz stress of 4.14 GPa can

reasonably be chosen as a representative stress for the dynamic load capacity. Also, the stress of 4.14 GPa (600 ksi) is the

highest stress that can be placed on a hardened steel roller-race contact without plastic deformation of the contact.

Applying the four life equations and the ANSI/ABMA/ISO standards to the flat roller geometry and assuming no edge

loading, the theoretical lives normalized to a maximum Hertz stress of 4.14 GPa (600 ksi) tbr each roller geometry was

calculated. The relative life results were subsequently normalized to the flat roller geometry based upon the

ANS1/ABMA/ISO standards and a maximum Hertz stress of 2.4 GPa (350 ksi). These results are shown in Table 3.

The resultant predicted life at each stress condition strongly depends on the equation used but also the Weibull slope

assumed. As we previously discussed, the least variation in predicted life with Weibull slope comes with the Zaretsky

equation (Eq. (31)). At all conditions calculated, the ANSI/ABMA/ISO standards result in the lowest lives. Except for the

Weibull slope of 1.11 at which the Weibull equation predicts the highest lives, the highest lives are predicted by the
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Zaretskyequation.ForWeibullslopesof 1.5and2,boththeLundberg-Palmgrenandloannides-Harris(wherer,,= 0)
equationspredictlowerlivesthantheANSI/ABMA/ISOstandards.

Fatigue Limit (Fable 4). As we previously discussed, Ioannides and Harris advocates the use of a fatigue limit r,, in the

Lundberg-Pahngren equation where

(','o

(37)

and where Lm is the life with the fatigue limit r,,, L is the life without a fatigue limit r,, and r,, is the critical shearing stress.

For a fiat roller, assuming no edge loading and a Weibull slope of 1.11, lives were calculated for assumed values of r,,

equal to 138, 276, and 276x10 _GPa (20, 40 and 60 ksi). The results are summarized in Table 4(a). For each value of r,, of

Table 4, a resultant maxinmm Hertz stress-life exponent, n was calculated. It should be noted that there are no definitive

data in the literature to support the existence of a fatigue limit for through hardened bearing steels. However, if a fatigue

limit were to exist, the probability of fatigue induced failure in the operating range of most rolling-element bearings would

virtually not exist as a practical matter.

The analysis described above was repeated using a finite element analysis (FEA). These results are summarized in

Table 4(b). For the FEA results, the predicted lives increased with increases in fatigue limit as with the closed form

solution but to a lesser amount. Also, the resultant Hertz-stress life exponents were higher tbr the same maximum Hertz

stress and assumed fatigue limits with the FEA analysis. What is important to note is that in all cases the values predicted

with and without the assumption of a fatigue limit exceeds those predicted using the ANSI/ABMA/ISO standards.

We have concluded that loannides and Harris (9) have confused the existence of compressive residual stresses for that of

a fatigue limit. In 1965 Zaretsky, et al. (23) published the following relation

(1Jmax)r = -Tmax - 1 (__Sr (38)

where r,,,, is the maximum shear stress, (r,,,,,),. is the maximum shear stress modified by the residual stress, and S,. is the

residual stress, the positive or negative sign indicating a tensile or compressive residual stress, respectively. Accordingly, a

compressive stress would reduce the maximum shear stress and increase the fatigue life according to the inverse relation of

life and stress to the ninth power. The modified or adjusted life L4 would be

  =+m4I.ax'--',l1
2 )J

(39)

If in Eq. (37) we let r,, equal 1/2 S, and c/e equal 9, the two equations become identical. The resultant maximum Hertz

stress-life exponents n for a r,, of 138x10 6 GPa (20 ksi) in Table 4 are certainly consistent with a residual stress of

276xl0 6 GPa (40 ksi).

Roller Profile Comparison

Roller Prolile (TablesL --Four roller profiles previously described were analyzed using both a closed form solution and

finite element analysis (FEA) for stress and life. The loannides-Harris analysis without a fatigue limit is identical to

Lundberg-Palmgren analysis and the Weibull analysis is similar to that of Zaretsky if the exponents are chosen to be

identical. Because of this, only the Lundberg-Palmgren and the Zaretsky equations were used for this comparison. The

closed form solution considers only the maximum Hertz stress and the stressed volume as defined by Lundberg and

Palmgren where

1 /
V: _{ ,..I L . Z) (40)

It does not consider the effects of stress concentrations and the entire subsurface stressed volume.
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ThetheoreticallivesforeachrollergeometrywerecalculatedandnormalizedtoamaximumHertzstressof4.14GPa
(600 ksi). The relative life results were subsequently normalized to the flat roller geometry based upon the

ANSI/ABMA/ISO standard and a maximum Hertz stress of 2.4 GPa (350 ksi).

The results for the closed form solution without edge loading are summarized in Table 5(a). The Hertz stress-life

exponents n of 8.1 and 9.9 were from those summarized in Table 2 and calculated tbr line contact and a Weibull slope of

1.11 from Lundberg and Palmgren and Zaretsky. The values of life calculated by Zaretsky's method exceed those for

Lundberg and Palmgren. Both methods predict lives exceeding those of the standard.

With the closed form solution and not considering edge or stress concentrations, the flat roller profile has the longest

predicted life followed by the end-tapered profile, the aerospace profile and the crowned profile, respectively. The full

crowned profile produces the lowest lives. While there are life differences between the end tapered profile and the

aerospace profile, these differences may not be significant.

The FEA results consider the entire volume stressed under the Hertzian contact and the stress distribution including

stress concentrations and edge loading. These results are summarized in Table 5(b). This analysis would strongly suggest

that the flat roller geometry is least effective of the four profiles analyzed. Except for the flat roller profile, the lives

predicted with the FEA method exceed those with the closed form solution. As with the closed form solution, the end

tapered profile produced the highest lives but not significantly different from that of the aerospace profile. Certainly, for

critical applications where life and reliability are factors, these two profiles should be those of preference.

Effect of Edge Loading. The use of blended or profiled rollers is dictated by the fact that the ends or edges of a flat

roller will have edge stresses as illustrated in Fig. 2 that can reduce roller bearing life. In order to evaluate the effcct of

edge loading on the flat roller contact a finite element analysis (FEA) of stress and Iife was conducted considering a

smooth stress distribution with no end loading for a flat roller profile and one with end loading as summarized in

Table 5(b). The results were normalized to the ANSI/ABMA/ISO standards at a nominal maximum Hertz stress of 2.4 GPa

(350 ksi) and are summarized in Table 6. The relative lives from the standard are presented for comparison purposes. As

previously discussed the method of Zaretsky results in a higher life prediction.

The effect of edge loading on the flat roller profile, as expected, is to reduce life by as much as 98 and

82 percent at the higher and lower load, respectively. The actual percentage calculated depends on the analysis used.

However, except for the values at the higher stresses of 2.4 and 1.9 GPa (350 and 275 ksi), the predicted life even with

edge loading, will exceed that predicted with the ANSI/ABMA/ISO standard. As with the previous analysis for roller

profile the FEA analysis appears to reflect a higher maximum Hertz stress-life exponent n then normally accepted. There is

lacking in the open literature and, perhaps in the files of the bearing companies, a definitive database at lower Hertzian

stress (less than GPa (300 ksi)) for which any of these analyses can be benchmarked.

GENERAL COMMENTS

The basis for the ANSI/ABMA and ISO life prediction for cylindrical roller bearings is the life theory of

G. Lundberg and A. Palmgren published in 1947 and 1952 (4,5). Based upon an unpublished database, Palmgren in 1924

(14) assumed roller bearing life based on a modified line contact is inversely proportional to radial load to the 10/3 power.

In their 1952 publication Lundberg and Palmgi'en calculate a 10/3 exponent for roller bearings where one raceway has

point contact and the other raceway has line contact. Palmgren, in the third edition of his book, published in 1959 (21)
states,

"Pure line contact occurs only in certain exceptional cases. In many types of roller bearings, at least one track is slightly

crowned, so that in the case of zero load there is point contact, which, as the load increases, becomes line contact. The

exponent values p = 3 and p = 4 are therefore the limit values for roller bearings. As it is desirable to have a uniform method

of calculation for all designs of roller bearings under all conditions, it is of advantage to introduce a mean value of the

exponent for all types, namely p = 10/3. The basic dynamic load rating (capacity) of the roller bearings must then be adapted

so that the error is small in the most common range, L - 100 millions to L - 10,000 millions of (race) revolutions."

The 10/3 exponent has been incorporated into the ANSI/ABMA/ISO standards first published in 1953. While

Palmgren's assumption of point and line contact may have been correct for many types of roller bearings then in use by the

bearing company employing him, it is no longer the case for most roller bearings manufactured today and most certainly

for cylindrical roller bearings. Experience and the analysis presented herein suggests that the 10/3-power exponent is

incorrect and under predicts roller bearing life. Accordingly, it is our recommendation that the ANSI/ ABMA/ISO

standards for roller bearings be revised to reflect for cylindrical roller bearings a load-life exponent p = 4 with

consideration be given to increasing this value to p = 5.
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In 1985S.loannidesandT.A.Harris(9)publishedwhattheyclaimedwasa"'newlife"theoryincorporatingafatigue
limit.Theconceptofafatiguelimittbrrolling-elementbearingswasfirstintroducedbyPahngren(14)in 1924andthen
abandonedbyhimbythetirnehewrotethefirsteditionof hisbook(21).Lundbergand Paimgren do not consider the

concept of a fatigue limit in their 1947 life theory (4). What loannides and Harris (9) do is to tack onto the 1947 life theory

of Lundberg and Pahngren (4) a relationship incorporating a fatigue limit as discussed in our paper herein above. However,

this relationship is the same as the 1965 relation of Zaretsky el al. (23) to account for the effect of compressive residual

stress on rolling-element fatigue life. Hence, the fatigue limit of loannides and Harris is nothing more than one-half the

value of a compressive residual stress, if any, that exists in the steel. To assume anything else will result in an over

prediction of rolling-element fatigue life.

The first suggestion and methodology to use finite element analysis for rolling-element bearing life prediction comes

from loannides and Harris (9) in the application of their "new life" theory. The FEA analysis was applied by us both in this

paper and in our previous paper (13) for each of the life equations discussed above. Qualitatively, the FEA analysis

provides the same ordering of life prediction as does the closed form solution. The closed form solution first used by

Lundberg and Pahngren by implication assumes that the defined stress volume incorporates the maximum value of the

critical shearing stress. Whereas, using FEA, the distribution of shearing stresses throughout the entire subsurface Hertzian

contact is considered resulting for the most part in a higher life prediction. Because the FEA analysis is sensitive to edge

loading and stress concentrations, it is our opinion that it may provide a more accurate quantitative life prediction than the

closed form solution regardless of the life theory used. However, in some cases the resultant maximum Hertz stress-life

exponent n ranged from -14 to 18 and in a single case, n = 29. These values were higher than we anticipated.

Untbrtunately, a valid database does not exist to either validate or invalidate the analysis, it is our recommendation that

until the various FEA analysis are verified with either experimental or field data, the more conservative life values be

relied upon.

SUMMARY OF RESULTS

Four roller profiles used in cylindrical roller bearing design and manufacture were analyzed using both a closed tbrm

solution and finite element analysis (FEA) for stress and life. The roller profiles analyzed were flat, tapered end, aerospace

and fully crowned. The roller profiles normally used vary with manufacturer. Four rolling-element bearing life models

were chosen _br this analysis and compared. These were those of Weibull, Lundberg and Palmgren, loannides and Harris,

and Zaretsky. The effect of a fatigue limit on roller bearing life was evaluated. The loannides-Harris analysis without a

fatigue limit is identical to the Lundberg and Palmgren analysis and the Weibull analysis is similar to that of Zaretsky if the

exponents arc chosen to be identical. The roller geometries were evaluated at the normal loads that produced nominal

maximum Hertz stresses on a flat raceway of 1.4, 1.9, and 2.4GPa (200, 275, and 350 ksi). The theoretical relative lives

were compared to the ANSI/ABMA/ISO life prediction standards tbr cylindrical roller bearings at 2.4 GPa (350 ksi). The

maximum Hertz stress-life exponents were determined for the individual roller profiles and the resultant individual lives

were compared. The following results were obtained:

1. With the closed form solution and not considering edge or stress concentrations, the flat roller profile has the

longest predicted life followed by the end-tapered profile, the aerospace profile and the crowned profile,

respectively. The full crowned profile produces the lowest lives. While there are life differences between the end

tapered profile and the aerospace profile, these differences may not be significant. For the FEA solution which

considered stress concentrations the end tapered profile produced the highest lives but not significantly different

from that of the aerospace profile followed by the crowned profile and the flat roller profile, respectively.

2. The effect of edge loading on the flat roller profile is to reduce life at the higher load by as much as

98 and 82 percent at the lower load. The actual percentage calculated depends on the analysis used.

3. The resultant predicted life at each stress condition not only depends on the life equation used but also on the

Weibull slope assumed. The least variation in predicted life with Weibull slope comes with the Zaretsky equation.

At all conditions calculated for a Weibull slope of 1.t 1, the ANSI/ABMA/ISO standard result in the lowest lives.

Except for the Weibull slope of 1.11 at which the Weibull equation predicts the highest lives, the highest lives are

predicted by the Zaretsky equation. For Weibull slopes of 1.5 and 2, both the Lundberg-Palmgren and Ioannides-

Harris (where r,, equal 0) equations predict lower lives than the ANSI/ABMA/ISO standard.

4. Based upon the Hertz stresses for line contact, the load-life exponent p of 10/3, results in a maximum Hertz stress-

life exponent n equal to 6.6. This value is inconsistent that experienced in the field. Lundberg and Palmgren's

justification for a p of 10/3 was that a roller bearing can experience "mixed contact," that is, one raceway can

experience "line contact" and the other raceway "point contact." This is certainly not consistent with the vast

majority of cylindrical roller and tapered roller bearings designed and used today.
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Appendix A--Derivation of Weibull Distribution Function

As presented in Melis et al. (24) and according to Weibull (6) any distribution function can be written as

F(X) = 1 - exp -[f(X)] (A1)

where F(X) is the probability of an event (failure) occurring. Conversely, from the above the probability of an event not

occurring (survival) can be written as

1- F(X)= exp - [f(X)] (A2a)

or

1 - F = exp -[f(X)] (A2b)

where F = F(X) and (1 F) = S, the probability of survival.

If we have n independent components, each with a probability of the event (failure) not occurring being (1 F), the

probability of the event not occurring in the combined total of all components can be expressed from Eq. (A2b) as

(1-F")=exp-[nf(X)] (A3)

Equation (A3) gives the appropriate mathematical expression for the principle of the weakest link in a chain or, more

generally, for the size effect on failures in solids. As an example of the application of Eq. (A3), we assume a chain

consisting of several links. Also, we assume that by testing we find the probability of failure F at any load X applied to a

"single" link. If we want to find the probability of failure F, of a chain consisting of n links, we must assume that if one

link has failed the whole chain fails. In other words, if any single part of a component fails, the whole component has

failed. Accordingly, the probability of nonfailure of the chain (1 - F,,), is equal to the probability of the simultaneous

nonfailure of all the links. Thus,

1 - F,, = (1 - F)" (A4a)

or

S n = S ll (A4b)

Or, where the probabilities of failure (or survival) of each link are not necessarily equal (i.e., $1 :¢:$2 _: $3 ¢ ...), Eq. (A4b)

can be expressed as

S,, = S 1 .S 2 .S 3 .... (A4c)

This is the same as Eq. (2) of the main text.

From Eq. (A3) for a uniform distribution of stresses throughout a volume V

Fv = 1 - exp - [Vf(o)] (A5a)

or

S = 1 - Fv = exp - [Vf(o)] (A5b)
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Equation(A5b)canbeexpressedasfollows:

lnEll = In fic,+lnV (A6)
in

It follows that if In In(l/S) is plotted as an ordinate and In/'(_) as an abscissa in a system of rectangular coordinates, a

variation of volume l" of the test specimen will imply only a parallel displacement but no deformation of the distribution

function. Weibull (6) assumed the form

f(_) = (A7)

and Eq. (A6) becomes

FiT
In

'nk_j = e In(c-_u)-e In ell3 +lnV (AS)

If r_,,, which is the location parameter, is assumed to be zero and V is normalized whereby InV is zero, Eq. (A8) can bc
written as

,n,nf l:
Equation (A9) is identical to Eq. (2) of the main text.

The form of Eq. (A9) where _,, is assumed to be zero is referred to as "two-parameter Weibull.'" Where G, is not

assumed to be zero, the form of the equation is referred to as "three-parameter Weibull."
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Appendix B--Derivation of System Life Equation

As discussed and presented in (24), G. Lundberg and A. Palmgren (4) in 1947, using the Weibull equation for rolling-

element bearing life analysis, first derived the relationship between individual component lives and system life. The

following derivation is based on but is not identical to the Lundberg-Palmgren (4) analysis.

Front Appendix A, Eq. (A9), the Weibull equation can be written as

(B1)

where N is the number of cycles to failure.

Referring to the sketch ofa Weibull plot in Fig. 7, the slope e can be defined as follows:

e_

xnloFxl_,nd±t
L&y_J LSrefJ
In N - In Nre f

(B2a)

or

and

From Eqs. (B l) and (B2b)

,nV±I N c
,nIL1

Ls_fJ

IN]e,nI--'Ls_.,,_JL s,._fj

(B2b)

(B3)

•Ssy s = exp- (B4)

Referring to Fig. 8, for a given time or life N, each component or stressed volume in a system will have a different

reliability S. From Eq. (A4c) tbr a series reliability system

Ssy s =S I.S 2.S 3....

Combining Eqs. (B4) and (B5) gives

_exp-F--]x_x_- x...
exp- _ =exp- _ LNI_2J

(B5)

(B6a)
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or

c r ,ctexp-_ :ex_-_ +[N_I +i_--7'J+" _"_'
It is assumed that the Weibull slope e is the same for all components. From Eq. (B6b)

(B7a)

[L N[31J LN_ 2 J LN_ 3 ]

Factoring out N from Eq. (B7a) gives

From Eq. (B3) the characteristic lives N_, N_, N_), etc., can be replaced with the respective lives NI, N_. F,5, etc., at S_r

(or the lives of each component that have the same probability of survival S_r) as follows:

r,n'it, 7_:r,oll[_]_[ ,][,]crlo;lr±_-- -- + + +... (B8)
L MjLUrefJ L srefj _ ln-_ _ L s_.fJLN3J

where, in general, from Eq. (B3)

I,]e:r, llIlle IB9a)
_ L s_JLN_,j

and

tile I 1][1] to= Ins-_e f _ ,etc. (B9b)

Factoring out In (1/S,_r) from Eq. (B8) gives

t
or rewriting Eq. (B 10) results in

I_ 1 to

Equation (BI 1) is identical to Eq. (21) of the text.
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TABLE I.--MAXIMUM HERTZ STRESS AS FUNCTION OF
NORMAL LOAD AND ROLLER PROFILE

[Roller Dia., 12.7 mm (0.5 in. ): roller length, 12.7 mm (0.5 in.).]

Nomlal load,

P,
N. llbs)

4239

(953)

8016
(1802)

12980
t2918)

la) Constant normal load

Flad [ End taperedZ [ Aerospace-" [ Crowned I
Maximum Hertz stress, GPa, (ksi)

1.38 1.53

(200) (222)

1.90 2.02
(275) (293)

2.41 2.52
(350) (365)

1.57
(227)

2.05

(298)
2.54

(369)

1.84
(267)

_._9

(333)
2.76

(400)
(b) Constant Hertz stress

Maximum

Hertz stress,
GPa, lksb

1.38

(200)
1.9

(275)

2.4
(350)

Based on closed form solution.

-'Based on laminated roller analysis.

Normal load. P, N, (lbs)

4239 3327

(953) (748)

8016 6993

(1802) (t572)
12980 11824

(2918) (2658)

3158 1557
(710) (350)

6699 3955

(1506) (889)
11521 8154

(2590) (1833)

TABLE 2.--MAXIMUM HERTZ STRESS-LIFE EXPONENT AS
FUNCTION OF WEIBULL SLOPE FOR FOUR LIFE

EQUATIONS

ANSI/ 1.11

ABMA/ISO

Weibull 1.11

eq. (10) 1.5
2.0

Lundberg- 1.11

Palmgren, 1.5
eq. (19) 2.0

loannides- 1.11
Harris, 1.5

eq. (26) 2.0

Zaretsky, 1.11

eq. t31) 1.5
2.0

Equation Weibull Stress-life exponent,

slope n
Line Point

contact contact

6.6 9

10,2 11.1

7.5 8.2

5,7 6.2
8.1 9

6.0 6.7
4.5 5.0

8.1 9

6.0 6.7

4.5 5.0

9.9 10.8
9.7 10.3

9.5 10.0

Load-life exponent,

P
Line Point

contact contact
3.33 3

5.1 3.7

3.8 2.7

2.9 2.1

4.1 3

3 2.2
2.3 1.7

4.1 3

3 2.2

2.3 1.7

5 3.6

4.9 2.2
4.8 3.3

LNo fatigue limit assumed, , equal 0.
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TABLE3.--COMPARISONOFRELATIVELIFEFROM
FOURLIFEEQUATIONSFORFLATROLLERWITH

NOEDGELOADINGt

Maximum ANSI/ Relative theoretical life

Hertz ABMA/ Weibull Lundberg- loannides- ] Zaretsky

stress, ISO eq. (10) Palmgren Harris _ ] eq. (31)GPa (ksil-" Standard 3 eq. (19) eq. (26)

Weibull slope, 1.11

1.9 (2751 4.9 79 16 16 65

2.4 (350) 1 6.4 2.2 2.2 5.9

Weibull slope, 1.5

,o 12,i.l  2,o1.9 (275t 4.9 9.9 3.1 3.1 551

2.4 (3501 1 1.6 0.7 0.7 5.3

Weibull slope, 2.0
1.4 (200) 40 15 4 4 971

1.9 (2751 4.9 2.4 2.4 2.4 47

2.4 (350) l 0.6 0.3 0.3 4.8

)mmlized to 4.14 GPa (600 ksi).
:Refer to Table 1 for values of load.

_Based on Weibull slope equal 1.1 l.

_No fatigue limit assumed, ,, equal 0.

TABLE 4.--EFFECT OF FATIGUE LIMIT ON RELATIVE LIFE OF FLAT ROLLER WITH NO EDGE
LOADING USING IOANNIDES-HARRIS EQUATION t

[Weibull Slope, 1.11.]

Maximum Relative theoretical life, L, and resultant stress-life exponent, n
Closed form soluuonHertz stress, ANSI/ABMA/ISO

GPa (ksi)Z standard

L [ 'n

1.4 (200) 40 6.6

1.9 (275) 4.9 6.6

2.4 (350) 1 --

1.4 (200) 4.0 6.6

1.9 (275) 49 6.6

2.4 (350) 1 --

Fatigue limit .... GPa (ksi)

0 138 10_'(20) 276 10-°(40) 414 10-_(60)

Ll n Ll'n L L
(a) loannides-Harris, eq. (261

209 8.1 9074 11.4 5.7 10 _ 18.4 % 4e

16 8.1 209 10.7 7545 15.7 2.8 l0 n 25.6

2.2 -- 16 - - 190 5815

(bt Finite element analysis

661 12.2 8267 16 1.5 l0 e 20.5 9.7 106 27.8

"_'_ 2737 14.1 215 19.1 _,_4 47165 38.5

2.2 -- 4.7 - - 10 -- 22 - - -

tNormalized to maximum Hertz stress of 4,14 GPa (600 ksi) without a fatigue limit.

-'Refer to Table 1 for values of load.
3Normalized to maximum Hertz stress of 2.4 GPa (350 ksit.

41nfinite life,

TABLE 5.--EFFECT OF ROLLER PROHLE ON RELATIVE LIFE I

[Weibull slope, 1.11, critical shear stress, _,l

Maximum ANSI/ (a) Closed form solution without edge loading

Hertz stress, ABMABSO Lundber_-Palmgren (eq. (19)) Zaretsk_, (eq. (31)}

GPa, (ksi)" standard Hat End tapered Aerospace Crowned Hat End ta _ered Aeros _ace Crowned
Life 'n Life _n Life _n Lile 3n Life _n Life _n Life 3n Life _n Life 3n

1.4 (200) 40 6.6 209 8.1 90 8.1 75 8.1 20 8.1 1509 9.9 537 9.9 431 9.9 86 9.9

1.9 (275l 4.9 6.6 16 8.1 9.5 8.1 8.3 8,1 3.4 8.1 65 9.9 34 9.9 29 9.9 9.7 9.9

2.4 (350) 1 -- 2.2 - - 1.6 -- 1.5 - - 0.8 -- 5.9 -- 3.9 -- 3.5 -- 1.6 --

(hi Finite Element Anal;'sis (FEAI with edge loading

1.4(2001 144iO 16.6 71 15.51630 13.9 528 10.'7 96 10.7 296 15.7 824112.6[756 10.6 1211128.61.9(275} 6,6 1.2 1.5,9 33 17.9 33 11.2 13 15,2 4,9 16.3 43 14.9 35 9.3 12 8.7
2.4 (350} -- 0.05 0.93 --- 3.5 --- 0.65 --- 0.19 --- 2.2 --- 5.4 --- 2.2

_Normalized to maximum Hertz stress of 4.14 GPa (600 ksi).
:Table 1 for values of load.
3Normalized to maximum Hertz stress of 2.4 GPa (350 ksi).
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TABLE 6.--EFFECT OF EDGE STRESSES ON RELATIVE LIFE OF FLAT
ROLLER BASED ON FINITE ELEMENT ANALYSIS j

[Weibull Slope, 1.11: critical shear stress, 45.1

Maximum ANSI/ABMA/ISO ILundberg-Palmgren Zaretsky

Hertz stress, standard (eq. (19)) (eq. (31 ))
GPa (ksir" Relative theoretical life, L, and resultant stress-life exponent, n

No edge stresses

1.41200) t 40 6.6 667 12.2 I 16_228 I 13
1.91275) 49 6.6 37 14.1 14.1
24  50) i -- 22 --- 33

Edge stresses
1.4i200) 40 6.6 71 15.5 I 296 I 15.7

1.9 (275} 4.9 6.6 1.2 15.9 4.9 I 16.32.4(350) 1 -- 0.05 --- 0.19
Normalized to maximum Hertz stress of 4.14 GPa (600 ksi}.

:Refer to Table 1 for values of load.
'Normalized to maximum Hertz stress of 2.4 GPa (350 ksil.

Outer ring _.r_ _t" ._ Flange

Shoulder --_/_ . _ Roller

I/] ff-_ -"-- Inner ring
jr/i, ,//__ _ uore. _ Raceway

lil,

Figure 1.---Cylindrical roller bearing with nonlocating
inner raceway. Bearing accommodates axial

movement by not restraining rollers axially on inner
raceway. Similar beadng with flanged inner ring

allows axial roller movement on outer raceway.

F
Crown

drop

I_ Total length, It

l_ Flat length, If

. _ Crown
radius

I

/

Blend point ---"

LI

Diameter

/-- No ,-- Crown

/ crown /

Contact /

stress // \

I
Length

Figure 2.mRoller profile influence on stress pattern.
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It _-_ p_l-_lf_

d d

"-- Eclge loading

/f -_ _ 14

,-- Contact geometry .-- Contact geometry
/ /

Figure 3.--Roller profile types and Hertzian contact geometry. (a) Flat roller profile. (b) Tapered crown roller

profile. (c) Aerospace crown roller profile. (d) Full crown roller profile.
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Contact

ellipse

\

Figure 4.--Schematic of loaded crowned roller on race.

Roller--,
\

Figure 5._Quarter section finite-element model of roller-race contact.
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GPa

(ksi)

0.43 (62)---

0.32 (46) ....

0.1 (1)---

o.21 (31)---

0.19 (27) -- -

0.13 (19) _-

0.10 (15) -- -

0.08(11)-- _.

0.05(7)--_

0.02(3)_- _

(a)

0.57 (82) -- -_

0.71 (103) .....
0.85 (123)

1.1 3 (164) _ _ _ _ _

0.99 (143)_ -

0.77 (112)

(b)

Figure 6.--FEA stress profile of quarter section of raceway for roller with aerospace

(partial) crown. Maximum Hertz stress, 1.9 (275) GPa (ksi). (a) Orthogonal shear
stress. (b) Von Mises stress.
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Figure 7.--Sketch of Weibull plot where (Weibull) slope

or tangent of line is e. SI_ is probability of survival

of 36.8 percent at which N = N_ or NINI3 = 1.
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v-103
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///
/

Fig. 7)_-_//I//_ Ili
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/
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Nre f N 1 N2 N 3 N
In N

Figure 8.---Sketch of multiple Weibull plots where each numbered

plot represents cumulative distribution of each component in system

and system Weibull plot represents combined distribution of plots

1,2, 3, etc. (All plots are assumed to have same Weibull slope e.)

NASA/TM--2000-210368 26





REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimatedto average1 hour per response,includingthe time for reviewing instructions, searching existingdata sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information, Send comments regarding thisburden estimate or any other aspect of this
collection of information,including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204. Arlington. VA 22202-4302, and to the Office of Managemenl and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 13, REPORT TYPE AND DATES COVERED

August 2000 1 Technical Memorandum

4. TITLE AND SUI_TITLE 5. FUNDING NUMBERS

Effect of Roller Profile on Cylindrical Roller Bearing Life Prediction

6. AUTHOR(S)

Joseph V. Poplawski, Erwin V. Zaretsky, and Steven M. Peters

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

John H. Glenn Research Center at Lewis Field

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

WU-253-02-98-00

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-12037

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM--2000-210368

11. SUPPLEMENTARY NOTES

Prepared for the 2000 Annual Meeting sponsored by the Society of Tribologists and Lubrication Engineers,

Nashville, Tennessee, May 7-11, 2000. Joseph V. Poplawski and Steven M. Peters, J.V. Poplawski and Associates,

528 N. New Street, Bethlehem, Pennsylvania: Erwin V. Zaretsky, NASA Glenn Research Center. Responsible person,

Erwin V. Zaretsky, organization code 5900, (216) 433-324 I.

12a. DISIHiBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Categories: 37 and 39 Distribution: Nonstandard

This publication is available from the NASA Center for AeroSpace Information, (301) 621--0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Four roller profiles used in cylindrical roller bearing design and manufacture were analyzed using both a closed form

solution and finite element analysis (FEA) for stress and life. The roller profiles analyzed were flat, tapered end,

aerospace, and fully crowned loaded against a flat raceway. Four rolling-element bearing life models were chosen for

this analysis and compared. These were those of Weibull, Lundberg and Palmgren, Ioannides and Harris, and Zaretsky.

The flat roller profile without edge loading has the longest predicted life. However, edge loading can reduce life by as

much as 98 percent. The end tapered profile produced the highest lives but not significantly different than the aerospace

profile. The fully crowned profile produces the lowest lives. The resultant predicted life at each stress condition not only

depends on the life equation used but also on the Weibull slope assumed. For Weibull slopes of 1.5 and 2, both Lundberg-

Palmgren and Iaonnides-Harris equations predict lower lives than the ANSI/ABMA/ISO standards. Based upon the Hertz

stresses for line contact, the accepted load-life exponent of 10/3 results in a maximum Hertz stress-life exponent equal to

6.6. This value is inconsistent with that experienced in the field.

14. SUBJECT TERMS

Rolling-element bearings: Life prediction methods: Rolling-element fatigue:

Stress analysis

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OFPAGES

32

16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18

298-102



ERRATA

NASA/TM--2000-210368

EFFECT OF ROLLER PROFILE ON CYLINDRICAL ROLLER BEARING LIFE PREDICTION

Joseph V. Poplawski, Erwin V. Zaretsky, and Steven M. Peters

August 2000

Page 7, equation (26): Replace --
1 1

with
Snax --maxSn(ru )

Page 8, equation (32a): Replace
c+l 1

with c +--
e e

Page 8, equation (32b): Replace
c+2 2

with c + --
e e

Page 20, table 2: In the Load-life exponent, p, Point contact column and the Zaretsky, eq. (31) row, replace
the 2.2 with 3.4








